
Integrable quantum chain and the representation of the quantum group SUq(2)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 3825

(http://iopscience.iop.org/0305-4470/24/16/020)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 13:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 24 (1991) 3825-3836. Printed in the U K  

Integrable quantum chain and the representation of the 
quantum group SU,(2) 

Bo-Yu Hout ,  Kang-Jie S h i t t ,  Zhong-Xia Yangt and  Rui-Hong Y u e t t  
i CCAST (World Laboratory) PO Box 8730, Beijing 100080, People's Republic of China 
7 Institute of Modern Physics, Northwest University, Xian Shaanxi 710069, People's 
Republic of Chinas 

Received 31 January 1990, in final form 3 April 1991 

Abstract. We discuss the XXZ spin chain with certain boundary terms and the representa- 
tion of quantum group SU,,(2). I t  is shown that Bethe ansatz states are highest-weight 
states of S U , ( 2 ) .  With a generic q we ~ o n s t r ~ ~ f  the irreducible representations of the 
quantum group. For q being a root of unity, we show that there are new Bethe ansatz 
states, which coincide with null  state^ of SU,,(Z). By taking certain limits we can derive 
the state Ib), which is necessary for constructing the indecomposable but reducible rep- 
resentations of S U , ( 2 )  and for the completeness of the state space. In this case the 
Hamiltonian may not be completely diagonalized. 

1. Introduction 

Recently, one-dimensional exactly solvable statistical models have been extensively 
studied, and Heisenberg spin chain systems are of particular interest [l-61. It has been 
shown that the isotropic X X X  model corresponds to the rational solutions of the 
Yang-Baxter equation [4,5]. The model possesses SU,(2) symmetry and is exactly 
solvable [6]. Yang and Yang [7] studied its ground and  excited states. lzergin and 
Korepin [ X I  have shown that for Bethe ansatz ( B A )  states associated with the X X X  
model, the impulsions are distinct. I t  has been shown that the X X Z  model with periodic 
conditions and the six-vertex model are equivalent [3-5]. For the X X Z  model with 
particular boundary conditions, Alcaraz et a /  [9] and  Sklyanin [lo] have obtained the 
energy and eigenstates, using the BA and QISM respectively. It has been shown that 
the model has SU,(2) symmetry and  may be  related to the representation of SU,(2). 

For the X X Z  model with particular conditions, the Hamiltonian can be expressed 
as a linear combination of the elements of Temperley-Lieb algebra [l]. The impulsion 
ks in BA states are generically all distinct a n d  satisfy the BA equation. In this paper 
we show that BA states are highest-weight states (HWS) of SU,(2). We construct the 
representation of SU,(2) and discuss its completeness. We then look for BA states with 
some of its impulsion ks identical. For the parameter SU,(2),  q being a root of unity, 
we find that BA states may have identical k s  with eix = q. 

In  this case some states in  the SU,,(2) representation will degenerate into null states, 
and  coincide with such E A  states [ l l ] .  Thus the representation space is no longer 
complete due  to the coincidence of two originally independent states. We present a 
new approach to overcome this difficulty and obtain an indecomposable (type I )  
representation of SU,,(2). 
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2. XXZ model and SU,(2) 

Quantum SU,(2) algebra is a generalization of classical SU(2) algebra, with generators 
satisfying 

IS; ,  S*l= *S* [S+,  S-I = [2S:1 (2.1) 

where [XI- (q , ' -q- . ' ) / (q  - f ' ) .  The above expressions degenerate into classical 
SU(2) algebra in the limit q + 1. We can define the co-product, co-unity and antipode 
for the algebra given by (2.1) as 

A(qbS:)=  q*s;@q*s: A( S,) = qs:O S, + S,O q-" 

Y ( S * )  = -q"S* (2.2) 

&(S*)  = 0 

r(q*S') = q*s; 

& ( q * s : )  = 1 

and we have the direct product of N fundamental representations of SUJ2): 

N 

si= 1 u;J2 
( = I  

(2.3) 
0 -",;I2 q"i/'@. , . o q " i ~ , 1 2 0 u : / 2 0 9 ~ y i + 1 f 2 0  . . .  x q  

N 

S,  = 
i = ,  

where uis are Pauli matrices, and the index i denotes the space. The centre of the 
algebra is 

S' = sLs++ [S: +$I2-  [fl' (2.4) 

and, further, we have the following relation: 

with both sides acting on ker(S+), where 

[m]!-[m][m-11.. .[2][1] [O]!= 1. 

The Hamiltonian for the XXZ model with particular boundary conditions is 
given by 

(2 .6)  H = N ~ ' ( u . ~ u ~ + , + ~ : ~ ~ + , + ~ ~ i u ~ + , ) + ~  4-4- '  2 
1 - 1  2 
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where e, is the generator of Temperley-Lieb algebra [ I ,  101. Since Temperley-Lieb 
algebra commutes with SU,(2), it is easy to show that 

[ H, .%I= 0 [ H ,  S,] = 0 (2.8) 

i.e. the spin chain described by the Hamiltonian H possesses quantum SUJ2) sym- 
metry. From (2.3) we can thus represent a state by eigenvalues of H and S:. Alcaraz 
has obtained the eigenstates and their corresponding eigenvalues of this system [91. 
For a configuration with n spins down ( N  - n up), the eigenstate of H is 

(2.9) 

where x denotes the position of the downward spin 1 s x, <. . . < x < N, ( n  s N / 2 ) ,  and 

b)m= I f ( x  ,,..., x.)lx,. . . A) 
{ X I /  

.f=E &,A(k,, , . . . , k,,,,) exp[i(k,,x,+. . .+ k, ,x , ) l  (2.10) 
P 

the summation above is over all permutations and negations of impulsions k; 
sign at each transformation. The coefficients A are 

changes 

and the impulsion ks  satisfy the BA equations 

(2.12) 

with a ( k ) =  1 -q-'exp(-ik). 
The corresponding energy eigenvalue is 

" 
E ,  = ( N  - I ) ( q +  q- ') /2+4 1 [Cos kj - (q+q- ') /2].  (2.13) 

i = ,  

3. The irreducible representations of SU,(2) 

In the preceding section, the SU,(2) symmetry of the system is presented. The rep- 
resentation space of SU,(2) can be obtained by applying S, and S- on all the HA 

states. We show that RA states are HWSS of S U , ( 2 ) ,  as pointed out by Pasquier and 
Saleur [I] ,  and thus the whole state space is obtained by acting on BA states with S- .  

(3.1) 

Take a BA state with n + 1 spin down as 

I n  + l ) H A  = E f ( x l , ,  . . 2 x,#+$)lxl 3 . .  . I x,z+l). 
l . Y , l  

When S, is applied it flips a downward spin upward, thus 

S+ln+l)HA-IP)= g ( x  I , . . . ,  XJX I,...,. G). (3.2) 
{.<,I 
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From the definition of S, we have, after a'straightforward calculation, 

g(x, , .  . . , X,)lXI,. . . ,X")  

(3.4) is written as 

q"-2"+'l/2 d x , ,  . , , 1  X,,) 
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We can rewrite (3.6) as 

9(N--?"+'/2' g(x, ,  . . , I x.) 

X 9'2itXI+' exp[i(k,, +kp,+JxJ 
[ I - q  exp(ik,7,,,)j[l-q exp(ik,,)] 

x{(q2+1) exp(ik,,+,)-9-q exp[i(k,,+,+k,,I). (3.7) 

Summing over the permutation of k ,  and k,,+, , and noticing that 

(3.8) 
A(k,,, . . . , k,,, k,,+,, . . . , k,,, ,+,)- ( 9 2 + l ) e x ~ ( i k p , ) - q - q  exp[i(k,,+k,,Jl 
4 k D , , . . . ,  k,,+,,k,,,. . . , k , , + , j - ( 9 ' + l ) e x ~ ( i k , , + ~ ) - q - q  exp[i(k,+k,,+,)l  

it is easy to check that the summation vanishes: 

g(x ,,.._, x,)=0* S,ln+1),,=0. (3.9) 

Thus In)sA is a HWS of SU,(2) with j=(N-Zn) /Z .  Applying S- on In)RA successively, 
we obtain N - 2 n +  1 states having the same energy. They constitute an ( N - 2 n +  1)- 
dimensional irreducible representation of SU,(2) for a generic q. For such an N spin.; 
system, by counting the number of states, one can show that there exist r y  = C y  - Cy-l 
independent HWSS of SU,(2) with j = ( N  - 2n)/2 for a given n S N / 2 .  Pasquier and 
Saleur indicated that there also exist r," linearly independent BA states with n downward 
spins. It is easy to check that 

IN121 
1 ( ~ - 2 n + i ) r , N = 2 ~  (3.10) 

n=o 

where { N/2} is the integral part of N/2. Thus the states in all irreducible representations 
having EA states as H W S ~  are complete. (The spin-f particle has two independent spin 
states, and thus the N spin-f system has 2N spin states.) Consequently the open X X Z  
spin chain eigenstate space is classified to the irreducible representations of SU,(2), 
with different eigenenergies corresponding to different irreducible representations. It 
is important t o  point out that so far we have excluded the case for q being a root of 
unity. For the case of 9 being a root of unity, which we denote as 9,, for clarity, things 
are far more complicated. 

4. Solutions of the BA equation and null states for qa 

In a EA state, when 9 is not a root of unity, the impulsions k are all distinct, or will 
have zero amplitude. On the other hand, the function has no reflected wave, if e'A = 90. 
However, when 9 + qo. we may have EA states with some impulsions k + y o ,  where 
qa= eiya. We study the case in which there can be m identical impulsions k -  y o .  

Write the EA equations as 

where A =  q+9- ' .  
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Suppose when 9+9,,.  with q:=-l ,  there exists a solution { k j ]  to equations (4.1) 
with n distinct ks. We study if n+m transcendent equations may accommodate a 
solution with m k s +  y(,, which are denoted as y,, and the rest of the impulsions are 
{ k ; } ,  k ; +  k,. 

We have from (4.1) 
e ~ 2 ( N - n - m + l l h , '  

and (4.4) is equivalent to (4.1). Let y, = y + E ,  and y - yo = A ;  when A + 0, E --f 0, from 
(4.3), we have 

The zero-order equations imply that when 

1 3 l N - m - Z n i l )  = 
40 

we have 

One obvious solution of (4.6) is 
E, = & elZlr,/m 

(4.6a) 

(4.66) 

(4.7) 

Now we construct a BA state In, m)BA by using the solutions of (4.6) and the 

P(-y , )= (l-q')q-"+"+O(E) (4.8a) 

following relations: 

(4.86) 
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According to the definition of wavefunction 1; and taking into account (4.8) we may 
have the following relation after a lengthy calculation (see the appendix): 

=f(X,,X2,...,X.tm) (4.9) 
where U! is the number of  ks whose corresponding x: are smaller than the x,:; ( / =  
1 , .  . . , m )  corresponding to y,,,, and f ( x , , ,  . . . , x~, , )  are the coefficients of while 
{xi, <xi,. . . < x J  is a subset of {x, < x 2 . .  . <x,+,}. Consequently we can construct 
the state In, m)RA as long as 

E i  # El ( i  # j )  [ m ] !  # 0 C'ZO. 

When q = 90. (4.1) and  (4.4) have the solution { k i }  with distinct ks. Applying S- 
we obtain a linear space. It is easy to show that the state (S-)mln)B,, is a null state if 

(4.10) 

From (2.3), we may construct (S_)'"ln)RA by inserting m x,,,s into the row x, <. . . < 

Z ( N - 2 n - m t l I -  90 - 1  

o r  N - 2 n - m + l = O  ( m o d P ) ,  9 g = - l .  

x,, and each insertion produces a factor, 
( 1 / Z ) ( r ~ l ~ 2 H , J - i 1 / 2 t 1 N - . ~ - - 2 , n + r - / ~ , l )  ~ q.~ -213 ,q~- ( l /21 ,  N - Z n t l )  

4 
where 8, is the number of xs before xi,. and f is the number of early inserted x;, . Thus 
we have 

(S-". . . . , X") 

- 7 I "  I \ , n - ( 1 / 2 1 1 N ~ 2 n ~ n i i - ~ l m ~ n r , ~ + r , . +  ...+ r, 
- i. ,*,, . . . 1  x"; s,. . . .,* .,.,,, I Y  l Y  

( 5 )  

(4.11) 
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From (4.14), we can see that it is the HWS of the irreducible representation, i.e. 
In, m)BA. coincides with (S-)mln)RA, a null state of another representation, when 9 + qO. 
The space constructed from In, m)BA. by S- is in fact a subspace of that constructed 

Because of the overlapping of the states, there appears the problem of 'missing 
states'. Consequently, the SU,(2) representation is changed, and an indecomposable 
representation emerges. To construct this type of representation, we need to make up 
for the 'missing states'. 

I from In)BA. 

5. Type I representation of SU,(2) 

In the last section we have studied the solution of the BA equation in detail, and 
showed that the solution with n distinct k,s and m y,s can be seen as the solution of 
the BA equation in the limit 4 + qO. The corresponding states In, m)RAl  and c-'(S-)~I~)~~ 
are identical as 9 + qa. Moreover, they are null states. 

Because of this, the space generated from BA states by S- is no longer complete. 
To make up for the compensation, we look for a state satisfying the following relations: 

I 
S + ( b ) =  SY1ln),,C, (5.1) 

H l b ) =  E.lb)+C,SYln), ,  \ (5.2) 

where C, ,  C,  are constants and E"(4,) = E, ,+- (4J  is the energy expectation value at 
4 = q0 such that under S-, Ib) generates the 'missing states'. I n  this case, (5.2) implies 
that the Hamiltonian is not completely diagonalizable. 

We require that Ib) is orthogonal to the states of other,kepresentations. Thus we 
start directly from when 9 is not a root of unity. On the other hand, (S_)"ln)B, 
and In, m),,, are proportional to each other when 9- qo. Thus we define 

(5.3) 

Subsequently we show that Ib) defined above satisfies (5.1) and (5.2). From (2.5), we 
have 

S+(S-)min)na= [ m l [ N  - 2 n  - m +  lISY'ln),, .  (5.4) 

Taking the derivative at 4 = 9" and noticing that [ N - 2n - m + 11 is -O(9 - qO), 
we get 

q r - 2 n - m  + q , N + 2 " + m - 2  

=[m],(N-2n - m +  1)  (S?-'Ifl)"&> ( 5 . 5 )  
40- 90' 

where (d/dq S,),,,, is the derivative of S, at 9 = qO, obtained by differentiating (2.3) 
with respect to 9. 

Since 
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we have 

= ( S + ) , l b )  
q r - 2 n + m  + q,N+'"+m+2 

90-40' 
= i m l  ( N - 2 n  - m  + l)(S!-'ln)BA)q,, (5.6) 

i.e. Ib) thus defined satisfies ( 5 . 1 ) .  In a similar way we can show that Ib) satisfies (5.2), 
and give the results 

Hln)m= E,ln)w, Hln, m ) B A = E n + m l n ,  
(5.7) 

d 
H l b ) = E n ( q o ) l b ) + - ( E n  -&+,n)(S-)"'ln)~A. 

dq 
Thus the newly defined Ib) can make up the 'missing states'. A quasidiagonal H 

keeps diagonal elements of H unchanged. And the off-diagonal elements are non- 
vanishing. This representation is indecomposable. 

From the above procedure we can see that there always exits a state lb), such that 
applying S- on In).A and Ib), we can have the corresponding state space of the 
representation. As (q,,)" = -1, it is easy to show (S_)p  = 0. We use ( S _ ) " / [ p ]  to construct 
the state. Explicitly, we define (notice j - j '  = m and j + j ' +  1 = 0 mod p )  

l j - / p - r ,  A) = ( S - ) " + ' / [ p ] ' l n )  

1 j ' -  / p  - r, B )  = ( S - ) " + ' / [ p ] ' l b )  

for 0 s  r < p .  We then have 

S- 1 M - 1, A)  = - I M, A )  
[ P I "  

[ P I  

S,IM,A)=MlM,A) 

S,lM, B )  = MIM, E )  
S- 

IM-l,B)=,JM,B) 

where 

1 
0 otherwise 

p={b otherwise. 

When r +  1 < p ,  the action of S, gives 

S + l j ' - / p - r - l ,  E )  

when j - M  + 1 =O(mod p )  .={ 
when j ' - M +  1 = O(mod p )  = - ( j +  M(mod p ) )  

= S+(S_) '"+'+' / [p] ' lb)  

= (S_)"""/[pl'S+l b )  + [S+ , (S-)"'+'"l/ [ P I ' I  b )  

= ( S _ ) " + ' + ' " / [ p ] ' ~ , l n ) , , ~ +  [ / p  + r + I ] [ Z j ' -  / p  - r ] ( S - ) " " / [ p ] ' I b )  

= Fc,lj-  / p  - r - m ,  A)+  [ / p + r +  1 ] [ 2 j ' -  / p  - r ] l j ' -  / p  - r, B).  
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w h e r e F = [ p ] f o r r + m a p a n d  F = l  f o r r + m < p .  W h e n r + l = p , w e h a v e  

S+lj'- lp - r -  1, B) 

= S+(S_)""'"/[p]"'lb) 

Other relations of S, on 15) and IA) can be  similarly obtained. Thus {IB), IA)} constitute 
a representation of SU,(2). 

Notice that 

(j', Bl j -  m, A) 

[2j- m + I ]  
Aq 

= [1][2]. . . [m. -  1][2j][Zj- 11..  . [ Z j  - m +2]  (nln) 

Since 

[ j + M ]  [ j - M + l ]  
# 0  for ja  M > - j  

[PI0 [PI" 
we have (M,BIM,A)#O, giving I M , B ) , / M , A ) # O  for j ' a M 3 - j  (when M i  

So far we have found an  approach to make u p  'missing states' and to generate a 
representation of SU,(2) .  The representation is not irreducible but indecomposable, 
i.e. the type I representation of SU,(2). For an N spin lattice system, there exist variant 
sets of the solutions ( k , }  of the HA equation. Some of them have only distinct impulsions 
k,s, while others have distinct impulsions k, and identical impulsions yil. and can be  
classified into two classes. In the first case we cannot find another solution which has 
some ks and m identical y(,s for a state in this class. For the solution in the second 
class, we can find a pair of solutions which generate an indecomposable representation. 
Therefore, we have given an  approach to construct type I and  I I  representations of 

-j', IM, B )  - IM, 4). 

s u m  
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Appendix 

For a base vector I x , ,  . . . , x,,,) we derivef(x, ,  . . . ,x,,+,,,). To perform the permuta- 
tions and negations of n ks and m ys to match n + m  xs, we first choose m xs 
x,, < xj, < . . . < x ,,,, for m ys .  At the same time we have n xs xi, < x i >  < . . . < x!,, for n 
k s .  This is equivalent to giving a set of numbers O s  uI s U+. . . s U,, s n, where U, 

denotes the number of xi,s smaller than xj,. Next we perform the permutations and 
negations of ks to match the n xj,s, and the permutations and negations of y s  to match 
the m x,,s. We have k,,, corresponding to xi, and yn, corresponding to x,, , and have 

exp i 1 k,*x,,+i y,x,, = eikx ( A l a )  

(Alb)  I= z E I L I = X I & & & &  

En =(~ l i ) i . ,~ , (&p)per .ofk(Ep)nrp.  . f k ( E &  .f,(Ep)"ig " f Y  

( 1 
p ( v , )  per. of k neg. of k per. of y "ca.  or Y 

( E , ) I ( E , ) ~ ( E , ) ~ ( E , ) ~ ( E ~ ) ~ .  (Ale) 

Since p ( y j )  = O ( E ) ,  in the last step we therefore need only to consider the permutations 
of ys. Also, in the factor e'kc, we can use exp(iyx,) for exp(iy,x,,) with a relative error 
^-O(E).  

f (Xl , .  . ., X"+,) 

We have from (2.10), (2.11) 

-f(x t , , . . . ,  x;, . ;xj  , , . .  . , x  J,,, 1 
= Z,Z&,z,( E , )  I ( E,, ) A  EJJ ep )4 TI E ( -  kp., Y J  exp( -i yP,) 

I, <I 
I 8, 

x n B ( - Y , , ,  k p , )  exp(-ik,J,) n P ( - k , , )  

x n ~ ( - k , , . ,  kJ  w - i k , , . )  n P ( - Y p , )  

Y, >I , I /  

. Y , , < I , , .  

Noticing that 

B(-k, ,yl)e- 'Yf=B(k, ,  y,)e- '" ' ( l+O(&)) 

E(-? , ,  k, )  E(-y,, - k 5 )  e' ' , ( l+O(E)) 



r 1 

where 

We can show that 

and finally obtain 
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