Integrable quantum chain and the representation of the quantum group $\mathrm{SU}_{\mathrm{q}}(2)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 243825
(http://iopscience.iop.org/0305-4470/24/16/020)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 13:48

Please note that terms and conditions apply.

# Integrable quantum chain and the representation of the quantum group $\mathbf{S U}_{q}(\mathbf{2})$ 

Bo-Yu Hou $\dagger$, Kang-Jie Shi $\dagger \ddagger$, Zhong-Xia Yang $\dagger$ and Rui-Hong Yue $\dagger \ddagger$<br>$\ddagger$ CCAST (World Laboratory) PO Box 8730 , Beijing 100080, People's Republic of China $\dagger$ Institute of Modern Physics, Northwest University, Xian Shaanxi 710069, People's Republic of China§

Received 31 January 1990, in final form 3 April 1991


#### Abstract

We discuss the $X X Z$ spin chain with certain boundary terms and the representation of quantum group $\mathrm{SU}_{q}(2)$. It is shown that Bethe ansatz states are highest-weight states of $\mathrm{SU}_{q}(2)$. With a generic $q$ we construct the irreducible representations of the quantum group. For $q$ being a root of unity, we show that there are new Bethe ansatz states, which coincide with null states of $\mathrm{SU}_{4}(2)$. By taking certain limits we can derive the state $|b\rangle$, which is necessary for constructing the indecomposable but reducible representations of $\mathrm{SU}_{q}(2)$ and for the completeness of the state space. In this case the Hamiltonian may not be completely diagonalized.


## 1. Introduction

Recently, one-dimensional exactly solvable statistical models have been extensively studied, and Heisenberg spin chain systems are of particular interest [1-6]. It has been shown that the isotropic $X X X$ model corresponds to the rational solutions of the Yang-Baxter equation [4,5]. The model possesses $\mathrm{SU}_{q}(2)$ symmetry and is exactly solvable [6]. Yang and Yang [7] studied its ground and excited states. Izergin and Korepin [8] have shown that for Bethe ansatz (ba) states associated with the $X X X$ model, the impulsions are distinct. It has been shown that the $X X Z$ model with periodic conditions and the six-vertex model are equivalent [3-5]. For the $X X Z$ model with particular boundary conditions, Alcaraz et al [9] and Sklyanin [10] have obtained the energy and eigenstates, using the BA and QISM respectively. It has been shown that the model has $\mathrm{SU}_{q}(2)$ symmetry and may be related to the representation of $\mathrm{SU}_{q}(2)$.

For the $X X Z$ model with particular conditions, the Hamiltonian can be expressed as a linear combination of the elements of Temperley-Lieb algebra [1]. The impulsion $k \mathrm{~s}$ in BA states are generically all distinct and satisfy the ba equation. In this paper we show that BA states are highest-weight states (hws) of $\mathrm{SU}_{q}(2)$. We construct the representation of $\mathrm{SU}_{4}(2)$ and discuss its completeness. We then look for ba states with some of its impulsion $k$ s identical. For the parameter $\mathrm{SU}_{q}(2), q$ being a root of unity, we find that BA states may have identical $k \mathrm{~s}$ with $\mathrm{e}^{i k}=q$.

In this case some states in the $\mathrm{SU}_{q}(2)$ representation will degenerate into null states, and coincide with such bA states [11]. Thus the representation space is no longer complete due to the coincidence of two originally independent states. We present a new approach to overcome this difficulty and obtain an indecomposable (type I) representation of $\mathrm{SU}_{4}(2)$.

## 2. $X X Z$ model and $\mathbf{S U}_{q}(\mathbf{2})$

Quantum $\mathrm{SU}_{4}(2)$ algebra is a generalization of classical $S U(2)$ algebra, with generators satisfying

$$
\begin{equation*}
\left[S_{z}, S_{ \pm}\right]= \pm S_{ \pm} \quad\left[S_{+}, S_{-}\right]=\left[2 S_{z}\right] \tag{2.1}
\end{equation*}
$$

where $[X] \equiv\left(q^{x}-q^{-x}\right) /\left(q-q^{-1}\right)$. The above expressions degenerate into classical $\mathrm{SU}(2)$ algebra in the limit $q \rightarrow 1$. We can define the co-product, co-unity and antipode for the algebra given by (2.1) as

$$
\begin{array}{ll}
\Delta\left(q^{ \pm S_{z}}\right)=q^{ \pm S_{=} \otimes q^{ \pm S_{z}}} & \Delta\left(S_{ \pm}\right)=q^{S_{=} \otimes} S_{ \pm}+S_{ \pm} \otimes q^{-S_{z}} \\
\gamma\left(q^{ \pm S_{z}}\right)=q^{\mp S_{z}} & \gamma\left(S_{ \pm}\right)=-q^{ \pm 1} S_{ \pm}  \tag{2.2}\\
\varepsilon\left(q^{ \pm S_{z}}\right)=1 & \varepsilon\left(S_{ \pm}\right)=0
\end{array}
$$

and we have the direct product of $N$ fundamental representations of $\mathrm{SU}_{q}(2)$ :

$$
\begin{align*}
& S_{z}=\sum_{i=1}^{N} \sigma_{i}^{z} / 2  \tag{2.3}\\
& S_{ \pm}=\sum_{i=1}^{N} q^{\sigma ; / 2} \otimes \ldots \otimes q^{\sigma_{i-1}^{z} / 2} \otimes \sigma_{i}^{ \pm} / 2 \otimes q^{-\sigma_{i+1}^{\Sigma} / 2} \otimes \ldots \otimes q^{-\sigma_{\bar{N}}^{\Sigma} / 2}
\end{align*}
$$

where $\sigma_{i}$ s are Pauli matrices, and the index $i$ denotes the space. The centre of the algebra is

$$
\begin{equation*}
S^{2}=S_{-} S_{+}+\left[S_{z}+\frac{1}{2}\right]^{2}-\left[\frac{1}{2}\right]^{2} \tag{2.4}
\end{equation*}
$$

and, further, we have the following relation:

$$
\begin{equation*}
\left[S_{+}^{n}, S_{-}^{m}\right]=S_{-}^{m-n} \frac{[m]!}{[m-n]!} \prod_{k=1}^{n}\left[2 S_{z}-m+k\right] \tag{2.5}
\end{equation*}
$$

with both sides acting on $\operatorname{ker}\left(S_{+}\right)$, where

$$
[m]!=[m][m-1] \ldots[2][1] \quad[0]!=1
$$

The Hamiltonian for the $X X Z$ model with particular boundary conditions is given by

$$
\begin{equation*}
H=\sum_{i=1}^{N-1}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{v} \sigma_{i+1}^{\prime}+\frac{q+q^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z}\right)+\frac{q-q^{-1}}{2}\left(\sigma_{i}^{z}-\sigma_{N} \bar{N}_{N}\right) \tag{2.6}
\end{equation*}
$$

or

$$
H=\sum_{i=1}^{N-1}\left[\left(q+q^{-1}\right) / 2-2 e_{i}\right]
$$

with
$e_{i}=\frac{-1}{2}\left(\sigma_{i}^{v} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{\prime}+\frac{q+q^{-1}}{2} \sigma_{i}^{z} \sigma_{i+1}^{z}+\frac{q-q^{-1}}{2}\left(\sigma_{i}^{z}-\sigma_{i+1}^{z}\right)\right)+\frac{q+q^{-1}}{4}$
where $e_{\text {}}$ is the generator of Temperley-Lieb algebra [1,10]. Since Temperley-Lieb algebra commutes with $\mathrm{SU}_{q}(2)$, it is easy to show that

$$
\begin{equation*}
\left[H, S_{z}\right]=0 \quad\left[H, S_{ \pm}\right]=0 \tag{2.8}
\end{equation*}
$$

i.e. the spin chain described by the Hamiltonian $H$ possesses quantum $\mathrm{SU}_{y y}(2)$ symmetry. From (2.3) we can thus represent a state by eigenvalues of $H$ and $S_{z}$. Alcaraz has obtained the eigenstates and their corresponding eigenvalues of this system [9]. For a configuration with $n$ spins down ( $N-n$ up), the eigenstate of $H$ is

$$
\begin{equation*}
|n\rangle_{\mathrm{BA}}=\sum_{\left\{x_{i}\right\rangle} f\left(x_{i}, \ldots, x_{n}\right)\left|x, \ldots, x_{n}\right\rangle \tag{2.9}
\end{equation*}
$$

where $x$ denotes the position of the downward spin $1 \leqslant x_{1}<\ldots<x \leqslant N,(n \leqslant N / 2)$, and

$$
\begin{equation*}
f=\sum_{p} \varepsilon_{p} A\left(k_{p_{1}}, \ldots, k_{p_{n}}\right) \exp \left[\mathrm{i}\left(k_{p_{1}} x_{1}+\ldots+k_{p_{n}} x_{n}\right)\right] \tag{2.10}
\end{equation*}
$$

the summation above is over all permutations and negations of impulsions $k ; \varepsilon_{p}$ changes sign at each transformation. The coefficients $A$ are

$$
\begin{align*}
& A\left(k_{1}, \ldots, k_{n}\right)=\prod_{j=1}^{n} \beta\left(-k_{j}\right) \prod_{1 \leqslant j<l \leqslant n} B\left(-k_{j}, k_{l}\right) \exp \left(-\mathrm{i} k_{l}\right) \\
& \beta(k)=\left(1-q^{-\mathrm{i} k}\right) \mathrm{e}^{\mathrm{i}(N+1) k}  \tag{2.11}\\
& B\left(k_{1}, k_{2}\right)=\left[1-\left(q+q^{-i}\right) \mathrm{e}^{\mathrm{i} k_{2}}+\mathrm{e}^{\mathrm{i}\left(k_{1}+k_{2}\right)}\right]\left[1-\left(q+q^{-1}\right) \mathrm{e}^{-\mathrm{i} k_{1}} \mathrm{e}^{\mathrm{i}\left(k_{2}-k_{1}\right)}\right] \\
& \quad=\left(\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{2}}-q-q^{-1}\right)\left(\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{\mathrm{i} k_{2}}-q-q^{-1}\right) \mathrm{e}^{\mathrm{i}\left(k_{2}-k_{1}\right)}
\end{align*}
$$

and the impulsion $k$ s satisfy the ba equations

$$
\begin{equation*}
\frac{\alpha\left(k_{j}\right) \beta\left(k_{j}\right)}{\alpha\left(-k_{j}\right) \beta\left(-k_{j}\right)}=\prod_{\substack{t=1 \\ l \neq j}}^{n} \frac{B\left(-k_{j}, k_{l}\right)}{B\left(k_{j}, k_{l}\right)} \quad(j=1,2, \ldots, n) \tag{2.12}
\end{equation*}
$$

with $\alpha(k)=1-q^{-1} \exp (-\mathrm{i} k)$.
The corresponding energy eigenvalue is

$$
\begin{equation*}
E_{n}=(N-1)\left(q+q^{-1}\right) / 2+4 \sum_{j=1}^{n}\left[\cos k_{j}-\left(q+q^{-1}\right) / 2\right] . \tag{2.13}
\end{equation*}
$$

## 3. The irreducible representations of $\mathrm{SU}_{q}(\mathbf{2})$

In the preceding section, the $\mathrm{SU}_{q}(2)$ symmetry of the system is presented. The representation space of $\mathrm{SU}_{q}(2)$ can be obtained by applying $S_{+}$and $S_{-}$on all the BA states. We show that ba states are hwss of $\mathrm{SU}_{q}(2)$, as pointed out by Pasquier and Saleur [1], and thus the whole state space is obtained by acting on ba states with $S_{-}$.

Take a ba state with $n+1$ spin down as

$$
\begin{equation*}
|n+1\rangle_{\mathrm{BA}}=\sum_{\left\{x_{1}\right\}} f\left(x_{1}, \ldots, x_{n+1}\right)\left|x_{1}, \ldots, x_{n+1}\right\rangle . \tag{3.1}
\end{equation*}
$$

When $S_{+}$is applied it flips a downward spin upward, thus

$$
\begin{equation*}
S_{+}|n+1\rangle_{\mathrm{BA}} \equiv|\beta\rangle=\sum_{\left\{x_{1}\right\}} g\left(x_{1}, \ldots, x_{n}\right)\left|x_{1}, \ldots, x_{n}\right\rangle . \tag{3.2}
\end{equation*}
$$

From the definition of $S_{+}$we have, after a straightforward calculation,

$$
\begin{align*}
g\left(x_{1}, \ldots, x_{n}\right) & \left|x_{1}, \ldots, x_{n}\right\rangle \\
= & \sum_{x=x_{n}+1}^{N} f\left(x_{1}, \ldots, x_{n}, x\right) q^{x-(N+2 n+1) / 2}\left|x_{1}, \ldots, x_{n}\right\rangle \\
& +\sum_{l=2}^{n-1} \sum_{x=x_{l-1}+1}^{x_{1}-1} f\left(x_{1}, \ldots, x_{l-1}, x, x_{l}, \ldots, x_{n}\right) q^{x-2 l-(N-2 n-3) / 2}\left|x_{1}, \ldots, x_{n}\right\rangle \\
& +\sum_{x=1}^{x_{1}-1} f\left(x, x_{1}, \ldots, x_{n}\right) q^{x-(N-2 n+1) / 2}\left|x_{1}, \ldots, x_{n}\right\rangle \tag{3.3}
\end{align*}
$$

Consequently we have

$$
\begin{align*}
q^{(N-2 n+1) / 2} g & \left(x_{1}, \ldots, x_{n}\right) \\
= & \sum_{x=x_{n}+1}^{N} f\left(x_{1}, \ldots, x_{n}, x\right) q^{x-2 n}+\sum_{x=1}^{x_{1}-1} f\left(x, x_{1}, \ldots, x_{n}\right) q^{x} \\
& +\sum_{i=2}^{n-1} \sum_{x=x_{i-1}+1}^{x_{i}-1} f\left(x_{1}, \ldots, x_{i-1}, x, x_{i}, \ldots, x_{n}\right) q^{x-2(l-1)} . \tag{3.4}
\end{align*}
$$

Taking into account (2.10) and the relation

$$
\begin{equation*}
\sum_{x=x_{1}}^{x_{2}} q^{x} \mathrm{e}^{\mathrm{i} k x}=\frac{1}{1-q \mathrm{e}^{\mathrm{i} k}}\left(q^{x_{1}} \mathrm{e}^{\mathrm{i} k x_{1}}-q^{x_{2}+1} \mathrm{e}^{\mathrm{i} k\left(x_{2}+1\right)}\right) \tag{3.5}
\end{equation*}
$$

(3.4) is written as

$$
\begin{align*}
q^{(N-2 n+1) / 2} g & \left(x_{1}, \ldots, x_{n}\right) \\
= & \sum_{p} \varepsilon_{p} A\left(k_{p_{1}}, \ldots, k_{p_{n+1}}\right) q^{-2 n} \exp \left(\mathrm{i} \sum_{j=1}^{n} k_{p_{i}} x_{j}\right) \\
& \times \frac{\left[q \exp \left(\mathrm{i} k_{p_{n+1}}\right)\right]^{x_{n}+1}-\left[q \exp \left(\mathrm{i} k_{p_{n+1}}\right)\right]^{N+1}}{1-q \exp \left(\mathrm{i} k_{p_{n+1}}\right)} \\
& +\sum_{i=2}^{n-1} \sum_{p} \varepsilon_{p} A\left(k_{p_{1}}, \ldots, k_{p_{n+1}}\right) q^{-2(1-1)} \\
& \times \exp \left(\mathrm{i} \sum_{j=1}^{l-1} k_{p_{i}} x_{j}+\mathrm{i} \sum_{j=1+1}^{n+1} k_{p_{i}} x_{j-1}\right) \frac{\left[q \exp \left(\mathrm{i} k_{p_{1}}\right)\right]^{x_{i-1}+1}-\left[q \exp \left(\mathrm{i} k_{p_{i}}\right)\right]^{x_{l}}}{1-q \exp \left(\mathrm{i} k_{p_{i}}\right)} \\
& +\sum_{p} \varepsilon_{p} A\left(k_{p_{1}}, \ldots, k_{p_{n+1}}\right) \exp \left(\mathrm{i} \sum_{j=2}^{n+1} k_{p_{i}} x_{j-1}\right) \frac{\left[q \exp \left(\mathrm{i} k_{p_{1}}\right)\right]-\left[q \exp \left(\mathrm{i} k_{p_{1}}\right)\right]^{x_{1}}}{1-q \exp \left(\mathrm{i} k_{p_{1}}\right)} \tag{3.6}
\end{align*}
$$

Since

$$
\begin{aligned}
& A\left(k_{p_{1}}, \ldots, k_{p_{n+1}}\right) \alpha\left(k_{p_{1}}\right)-A\left(-k_{p_{1}}, \ldots, k_{p_{n+1}}\right) \alpha\left(-k_{p_{1}}\right)=0 \\
& A\left(k_{p_{1}}, \ldots, k_{p_{n+1}}\right) \beta\left(-k_{p_{n+1}}\right)-A\left(k_{p_{1}}, \ldots,-k_{p_{n+1}}\right) \beta\left(k_{p_{n+1}}\right)=0
\end{aligned}
$$

it is easy to show that

$$
\begin{aligned}
& \sum_{p} \varepsilon_{p} A\left(k_{p_{1}}, \ldots, k_{p_{n+1}}\right) \exp \left(\mathrm{i} \sum_{j=1}^{n} k_{p_{i}} x_{j}\right) \frac{\left[q \exp \left(\mathrm{i} k_{p_{n+1}}\right)\right]^{N+1}}{1-q \exp \left(\mathrm{i} k_{p_{n+1}}\right)}=0 \\
& \sum_{p} \varepsilon_{p} A\left(k_{p_{1}}, \ldots, k_{p_{n+1}}\right) \exp \left(\mathrm{i} \sum_{j=2}^{n+1} k_{p_{i}} x_{i-1}\right) \frac{\left[q \exp \left(\mathrm{i} k_{p_{1}}\right)\right]}{1-q \exp \left(\mathrm{i} k_{p_{1}}\right)}=0 .
\end{aligned}
$$

We can rewrite (3.6) as

$$
\begin{align*}
q^{(N-2 n+1 / 2)} g( & \left.x_{1}, \ldots, x_{n}\right) \\
= & \sum_{l=1}^{n-1} \sum_{p} \varepsilon_{p} A\left(k_{p_{l}}, \ldots, k_{p_{n+1}}\right) \exp \left(\mathrm{i} \sum_{j=1}^{i-1} k_{p_{i}} x_{j}+\mathrm{i} \sum_{j=1+2}^{n+1} k_{p_{j}} x_{j-1}\right) \\
& \times \frac{q^{-2 l+x_{i}+1} \exp \left[\mathrm{i}\left(k_{p_{i}}+k_{p_{i+1}}\right) x_{j}\right]}{\left[1-q \exp \left(\mathrm{i} k_{p_{i+1}}\right)\right]\left[1-q \exp \left(\mathrm{i} k_{p_{i}}\right)\right]} \\
& \times\left\{\left(q^{2}+1\right) \exp \left(\mathrm{i} k_{p_{i+1}}\right)-q-q \exp \left[\mathrm{i}\left(k_{p_{l+1}}+k_{\left.p_{l}\right]}\right]\right\} .\right. \tag{3.7}
\end{align*}
$$

Summing over the permutation of $k_{p_{l}}$ and $k_{p_{t+1}}$, and noticing that

$$
\begin{equation*}
\frac{A\left(k_{p_{1}}, \ldots, k_{p_{1}}, k_{p_{t+1}}, \ldots, k_{p_{n+1}}\right)}{A\left(k_{p_{1}}, \ldots, k_{p_{t+1}}, k_{p_{i}}, \ldots, k_{p_{n+1}}\right)}=\frac{\left(q^{2}+1\right) \exp \left(\mathrm{i} k_{p_{1}}\right)-q-q \exp \left[\mathrm{i}\left(k_{p_{1}}+k_{p_{t+1}}\right)\right]}{\left(q^{2}+1\right) \exp \left(\mathrm{i} k_{p_{t+1}}\right)-q-q \exp \left[\mathrm{i}\left(k_{p_{t}}+k_{p_{t+1}}\right)\right]} \tag{3.8}
\end{equation*}
$$

it is easy to check that the summation vanishes:

$$
\begin{equation*}
g\left(x_{1}, \ldots, x_{n}\right)=0 \Rightarrow S_{+}|n+1\rangle_{\mathrm{BA}}=0 . \tag{3.9}
\end{equation*}
$$

Thus $|n\rangle_{\mathrm{BA}}$ is a Hws of $\mathrm{SU}_{q}(2)$ with $j=(N-2 n) / 2$. Applying $S_{-}$on $|n\rangle_{\mathrm{BA}}$ successively, we obtain $N-2 n+1$ states having the same energy. They constitute an (N-2n+1)dimensional irreducible representation of $\mathrm{SU}_{q}(2)$ for a generic $q$. For such an $N$ spin- $\frac{1}{2}$ system, by counting the number of states, one can show that there exist $\Gamma_{n}^{N}=C_{n}^{N}-C_{n-1}^{N}$ independent hwss of $\mathrm{SU}_{4}(2)$ with $j=(N-2 n) / 2$ for a given $n \leqslant N / 2$. Pasquier and Saleur indicated that there also exist $\Gamma_{n}^{N}$ linearly independent bA states with $n$ downward spins. It is easy to check that

$$
\begin{equation*}
\sum_{n=0}^{\{N / 2\}}(N-2 n+1) \Gamma_{n}^{N}=2^{N} \tag{3.10}
\end{equation*}
$$

where $\{N / 2\}$ is the integral part of $N / 2$. Thus the states in all irreducible representations having ba states as Hwss are complete. (The spin $-\frac{1}{2}$ particle has two independent spin states, and thus the $N$ spin- $\frac{1}{2}$ system has $2^{N}$ spin states.) Consequently the open $X X Z$ spin chain eigenstate space is classified to the irreducible representations of $\mathrm{SU}_{q}(2)$, with different eigenenergies corresponding to different irreducible representations. It is important to point out that so far we have excluded the case for $q$ being a root of unity. For the case of $q$ being a root of unity, which we denote as $q_{0}$ for clarity, things are far more complicated.

## 4. Solutions of the ba equation and null states for $q_{0}$

In a ba state, when $q$ is not a root of unity, the impulsions $k$ are all distinct, or will have zero amplitude. On the other hand, the function has no reflected wave, if $\mathrm{e}^{i k}=q_{0}$. However, when $q \rightarrow q_{0}$, we may have bA states with some impulsions $k \rightarrow \gamma_{0}$, where $q_{0}=\mathrm{e}^{\mathrm{i} \gamma_{0}}$. We study the case in which there can be $m$ identical impulsions $k \rightarrow \gamma_{0}$.

Write the ba equations as

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} 2 N k_{1}}=\prod_{\substack{l=1 \\ i \neq j}}^{n} \frac{\left(\mathrm{e}^{-\mathrm{i} k_{i}}+\mathrm{e}^{\mathrm{i} k_{1}}-\Delta\right)\left(\mathrm{e}^{-\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{1}}-\Delta\right)}{\left(\mathrm{e}^{\mathrm{i} k_{t}}+\mathrm{e}^{\mathrm{i} k_{1}}-\Delta\right)\left(\mathrm{e}^{\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{1}}-\Delta\right)} \mathrm{e}^{\mathrm{i} 2 k_{i}} \quad(j=1, \ldots, n) \tag{4.1}
\end{equation*}
$$

where $\Delta \equiv q+q^{-1}$.

Suppose when $q \rightarrow q_{0}$, with $q_{0}^{p}=-1$, there exists a solution $\left\{k_{j}\right\}$ to equations (4.1) with $n$ distinct $k s$. We study if $n+m$ transcendent equations may accommodate a solution with $m k s \rightarrow \gamma_{0}$, which are denoted as $\gamma_{j}$, and the rest of the impulsions are $\left\{k_{j}^{\prime}\right\}, k_{j}^{\prime} \rightarrow k_{j}$.

We have from (4.1)
$\mathrm{e}^{\mathrm{i}(N-n-m+1) k_{i}^{\prime}}$

$$
\begin{align*}
&=\prod_{\substack{l=1 \\
l \neq j}}^{n} \frac{\left(\mathrm{e}^{-\mathrm{i} k_{i}^{\prime}}+\mathrm{e}^{\mathrm{i} k_{i}^{\prime}}-\Delta\right)\left(\mathrm{e}^{-\mathrm{i} k_{i}^{\prime}}+\mathrm{e}^{-\mathrm{i} k_{i}^{\prime}}-\Delta\right)}{\left(\mathrm{e}^{\mathrm{i} k_{i}^{\prime}}-\Delta\right)\left(\mathrm{e}^{\mathrm{i} k_{i}^{\prime}}+\mathrm{e}^{-\mathrm{i} k_{i}^{\prime}}-\Delta\right)} \\
& \times \prod_{i=1}^{m} \frac{\left(\mathrm{e}^{-\mathrm{i} k_{i}^{\prime}}+\mathrm{e}^{\mathrm{i} \gamma_{t}}-\Delta\right)\left(\mathrm{e}^{-\mathrm{i} k_{i}^{\prime}}+\mathrm{e}^{-\mathrm{i} \gamma_{i}}-\Delta\right)}{\left(\mathrm{e}^{i k_{i}^{\prime}}+\mathrm{e}^{\mathrm{i} \gamma_{l}}-\Delta\right)\left(\mathrm{e}^{\mathrm{i} k_{i}^{\prime}}+\mathrm{e}^{-\mathrm{i} \gamma_{i}}+\Delta\right)} \tag{4.2}
\end{align*}
$$

$\mathrm{e}^{\mathrm{i} 2(N-n-m+1) \gamma,}$

$$
\begin{align*}
= & \prod_{\substack{l=1 \\
l \neq j}}^{m} \frac{\left(\mathrm{e}^{-\mathrm{i} \gamma_{l}}+\mathrm{e}^{-\mathrm{i} \gamma_{l}}-\Delta\right)\left(\mathrm{e}^{-\mathrm{i} \gamma_{i}}+\mathrm{e}^{\mathrm{i} \gamma_{l}}-\Delta\right)}{\left(\mathrm{e}^{+\mathrm{i} \gamma_{i}}+\mathrm{e}^{-\mathrm{i} \gamma_{l}}-\Delta\right)\left(\mathrm{e}^{\mathrm{i} \gamma_{l}}+\mathrm{e}^{\mathrm{i} \gamma_{l}}-\Delta\right)} \\
& \times \prod_{l=1}^{n} \frac{\left(\mathrm{e}^{-\mathrm{i} \gamma_{l}}+\mathrm{e}^{\mathrm{i} k_{i}}-\Delta\right)\left(\mathrm{e}^{-\mathrm{i} \gamma_{i}}+\mathrm{e}^{-\mathrm{i} k_{i}^{\prime}}-\Delta\right)}{\left(\mathrm{e}^{\mathrm{i} \gamma_{l}}+\mathrm{e}^{\mathrm{i} k_{l}^{\prime}}-\Delta\right)\left(\mathrm{e}^{\mathrm{i} \gamma_{l}}+\mathrm{e}^{-\mathrm{i} k_{l}^{\prime}}-\Delta\right)} . \tag{4.3}
\end{align*}
$$

When $\gamma \rightarrow \gamma_{0}$, (4.2) becomes

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} 2(N-n-m+1) k_{i}}=\prod_{\substack{i-1 \\ l \neq j}}^{n} \frac{\left(\mathrm{e}^{-\mathrm{i} k_{1}}+\mathrm{e}^{-\mathrm{i} k_{l}}-\Delta\right)\left(\mathrm{e}^{-\mathrm{i} k_{,}}+\mathrm{e}^{\mathrm{i} k_{l}}-\Delta\right)}{\left(\mathrm{e}^{\mathrm{k}}+\mathrm{e}^{-\mathrm{i} k_{t}}-\Delta\right)\left(\mathrm{e}^{\mathrm{i} k_{l}}+\mathrm{e}^{\mathrm{i} k_{l}}-\Delta\right)} \prod_{t=1}^{m} \mathrm{e}^{-2 i k_{1}} \tag{4.4}
\end{equation*}
$$

and (4.4) is equivalent to (4.1). Let $\gamma_{j}=\gamma+\varepsilon_{j}$ and $\gamma-\gamma_{0}=\lambda$; when $\lambda \rightarrow 0, \varepsilon \rightarrow 0$, from (4.3), we have

$$
\begin{equation*}
(-1)^{m-1} \mathrm{e}^{\mathrm{i} 2(N+1-m-2 n) \gamma_{j}}\left(1+\mathrm{O}\left(\varepsilon_{j}\right)\right)=\prod_{\substack{i=1 \\ l \neq j}}^{m} \frac{\left(\mathrm{e}^{-\mathrm{i} \gamma_{i}}+\mathrm{e}^{\mathrm{i} \gamma_{t}}-\Delta\right)}{\left(\mathrm{e}^{\mathrm{i} \gamma_{i}}+\mathrm{e}^{-\mathrm{i} \gamma_{t}}-\Delta\right)} \tag{4.5}
\end{equation*}
$$

The zero-order equations imply that when

$$
\begin{equation*}
q_{0}^{2(N-m-2 n+1)}=1 \tag{4.6a}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{\substack{\rightarrow 0}} \prod_{\substack{l=1 \\ \mid \neq j}}^{m} \frac{\varepsilon_{j}-q_{0}^{2} \varepsilon_{i}}{\varepsilon_{i}-q_{0}^{2} \varepsilon_{j}}=(-1)^{m-1} \tag{4.6b}
\end{equation*}
$$

One obvious solution of (4.6) is

$$
\begin{equation*}
\varepsilon_{j}=\varepsilon \mathrm{e}^{\mathrm{i} 2 \pi j / m} \tag{4.7}
\end{equation*}
$$

Now we construct a BA state $|n, m\rangle_{\mathrm{BA}}$ by using the solutions of (4.6) and the following relations:

$$
\begin{align*}
& \beta\left(-\gamma_{j}\right)=\left(1-q^{2}\right) q^{-(N+1)}+\mathrm{O}(\varepsilon)  \tag{4.8a}\\
& \frac{B\left(-k_{j}, \gamma_{l}\right) \mathrm{e}^{-\mathrm{i} \gamma_{l}}}{B\left(-\gamma_{l}, k_{j}\right) \mathrm{e}^{-\mathrm{i} k} k_{l}}=-q^{-2}+\mathrm{O}(\varepsilon) \tag{4.8b}
\end{align*}
$$

According to the definition of wavefunction $f$, and taking into account (4.8) we may have the following relation after a lengthy calculation (see the appendix):

$$
\begin{align*}
& \sum_{\left\{v_{i}\right\}} C^{\prime} q^{-2 \Sigma_{v_{l}}} f\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \exp \left[\mathrm{i} \gamma\left(x_{j_{1}}+\ldots+x_{j_{m}}\right)\right]\left(\prod_{i<j}\left(\varepsilon_{i}-\varepsilon_{j}\right)\right)[m]!(1+\mathrm{O}(\varepsilon)) \\
& \quad=f\left(x_{1}, x_{2}, \ldots, x_{n+m}\right) \tag{4.9}
\end{align*}
$$

where $\nu_{i}$ is the number of $k \mathrm{~s}$ whose corresponding $x_{i}$ are smaller than the $x_{j b}(I=$ $1, \ldots, m)$ corresponding to $\gamma_{p_{1}}$, and $f\left(x_{i_{1}}, \ldots, x_{i_{1}}\right)$ are the coefficients of $|n\rangle_{\mathrm{BA}}$ while $\left\{x_{i_{1}}<x_{i_{2}} \ldots<x_{i_{n}}\right\}$ is a subset of $\left\{x_{1}<x_{2} \ldots<x_{n+m}\right\}$. Consequently we can construct the state $|n, m\rangle_{\mathrm{BA}}$ as long as

$$
\varepsilon_{i} \neq \varepsilon_{j} \quad(i \neq j) \quad[m]!\neq 0 \quad C^{\prime} \neq 0
$$

When $q=q_{0}$, (4.1) and (4.4) have the solution $\left\{k_{j}\right\}$ with distinct $k$ s. Applying $S_{-}$ we obtain a linear space. It is easy to show that the state $\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}}$ is a null state if

$$
\begin{equation*}
q_{0}^{2(N-2 n-m+1)}=1 \tag{4.10}
\end{equation*}
$$

or $N-2 n-m+1=0(\bmod P), q_{0}^{p}=-1$.
From (2.3), we may construct $\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}}$ by inserting $m x_{j_{h}}$ s into the row $x_{1}<\ldots<$ $x_{n}$, and each insertion produces a factor,

$$
q^{(1 / 2)\left(x-1-2 \theta_{l}\right)-(1 / 2)\left(N-x-2\left(n+t-\theta_{i}\right)\right)}=q^{x-2 \theta_{i}} q^{t-(1 / 2 k N-2 n+1)}
$$

where $\theta_{l}$ is the number of $x$ s before $x_{j_{i}}$, and $t$ is the number of early inserted $x_{j_{i}}^{\prime}$. Thus we have

$$
\begin{align*}
\left(S_{-}\right)^{m} \mid x_{1}, \ldots, & \left.x_{n}\right\rangle \\
= & \sum_{\left\{x_{1}\right\}} \mid x_{1}, \ldots, x_{n} ; x_{j_{1}}, \ldots, x_{j_{m}} Y\left\{q^{-(1 / 2)(N-2 n-m+2) m}\right\} q^{x_{i}+x_{i_{2}}+\ldots+x_{t_{m}}} \\
& \times\left(\sum_{p} q^{-2 \theta_{1}}\right) . \tag{4.11}
\end{align*}
$$

It is easy to show for permutatively inserting the $\left\{x_{j}\right\}$, with fixed $x_{1}, \ldots, x_{n}$, $\sum_{p} q^{-2 \theta_{1}}=q^{-2 \Sigma \nu_{i}} \times 1 \times\left(1+q^{-2}\right)\left(1+q^{-2}+q^{-4}\right) \ldots\left(1+q^{-2}+\ldots+q^{-2(m-1)}\right)$ and we have $\left(S_{-}\right)^{m}\left|x_{1}, \ldots, x_{n}\right\rangle$

$$
\begin{align*}
= & \sum_{\left\{x_{l}\right\}}\left|x_{1}, \ldots, x_{n} ; x_{j_{1}}, \ldots, x_{j_{H}}\right\rangle q^{-(m / 2)(N-2 n-m+2\}} \\
& \times q^{x_{j_{1}}+\ldots+x_{i_{1}}} q^{-2 \Sigma_{\nu_{i}}}[m]!q^{(m / 2)(m-1)} \tag{4.12}
\end{align*}
$$

giving
$\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}}=\sum_{\{x\}} \sum_{\left\{v_{1}\right\}} f\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \exp \left[\mathrm{i} \gamma\left(x_{j_{1}}+\ldots+x_{j_{m}}\right)\right]$

$$
\begin{equation*}
\times q^{-2 \sum m^{\prime}}[m]!q^{-(m / 2)(N-2 n+1)}\left|x_{1}, \ldots, x_{n+m}\right\rangle . \tag{4.13}
\end{equation*}
$$

Comparing (4.9) and (4.13), when $N-2 n-m+1=0(\bmod P)$, and $[m]!\neq 0, C^{\prime} \neq 0$, we have a $|n, m\rangle_{\mathrm{BA}} \equiv\left\{C^{\prime} \Pi_{i<j}\left(\varepsilon_{i}-\varepsilon_{j}\right)\right\}^{-1}|n, m\rangle_{\mathrm{BA}}$,

$$
\begin{equation*}
|n, m\rangle_{\mathrm{BA}^{\prime}} \rightarrow c^{-1}\left(q_{0}\right)\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}} \tag{4,14}
\end{equation*}
$$

where $\left\{k_{j}\right\}$ in $|n\rangle_{\mathrm{BA}}$ is just the set of distinct $k$ different from $\gamma_{0}$ in $|n, m\rangle_{\mathrm{BA}}$.

From (4.14), we can see that it is the hws of the irreducible representation, i.e. $|n, m\rangle_{\mathbf{B A}^{\prime}}$ coincides with $\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}}$, a null state of another representation, when $q \rightarrow q_{0}$. The space constructed from $|n, m\rangle_{\mathrm{BA}^{\prime}}$ by $S_{-}$is in fact a subspace of that constructed from $|n\rangle_{\mathrm{BA}}$.

Because of the overlapping of the states, there appears the problem of 'missing states'. Consequently, the $\mathrm{SU}_{q}(2)$ representation is changed, and an indecomposable representation emerges. To construct this type of representation, we need to make up for the 'missing states'.

## 5. Type I representation of $\mathrm{SU}_{4}(2)$

In the last section we have studied the solution of the ba equation in detail, and showed that the solution with $n$ distinct $k_{j} \mathrm{~s}$ and $m \gamma_{0} \mathrm{~s}$ can be seen as the solution of the BA equation in the limit $q \rightarrow q_{0}$. The corresponding states $|n, m\rangle_{\mathrm{BA}^{\prime}}$ and $c^{-1}\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}^{\prime}}$ are identical as $q \rightarrow q_{0}$. Moreover, they are null states.

Because of this, the space generated from ba states by $S_{-}$is no longer complete. To make up for the compensation, we look for a state satisfying the following relations:

$$
\begin{align*}
& S_{+}|b\rangle=S_{-}^{m-1}|n\rangle_{\mathrm{BA}} C_{1}  \tag{5.1}\\
& H|b\rangle=E_{n}|b\rangle+C_{2} S_{-}^{m}|n\rangle_{\mathrm{BA}} \tag{5.2}
\end{align*}
$$

where $C_{1}, C_{2}$ are constants and $E_{n}\left(q_{0}\right)=E_{n+m}\left(q_{0}\right)$ is the energy expectation value at $q=q_{0}$ such that under $S_{-},|b\rangle$ generates the 'missing states'. In this case, (5.2) implies that the Hamiltonian is not completely diagonalizable.

We require that $|b\rangle$ is orthogonal to the states of other/representations. Thus we start directly from $|n\rangle_{\mathrm{BA}}$ when $q$ is not a root of unity. On the other hand, $\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}}$ and $|n, m\rangle_{\mathrm{BA}}$ are proportional to each other when $q^{\prime} \rightarrow q_{0}^{\prime}$. Thus we define
$|b\rangle=\lim _{q \rightarrow q_{0}} \frac{S_{-\mid}^{m}|n\rangle_{\mathrm{BA}}-c\left(q_{0}\right)|n, m\rangle_{\mathrm{BA}^{\prime}}}{q-q_{0}}=\frac{\mathrm{d}}{\mathrm{d} q}\left(S_{-}^{m}|n\rangle_{\mathrm{BA}}-c\left(q_{0}\right)|n, m\rangle_{\mathrm{BA}}\right)_{q_{0}}$.
Subsequently we show that $|b\rangle$ defined above satisfies (5.1) and (5.2). From (2.5), we have

$$
\begin{equation*}
S_{+}\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}}=[m][N-2 n-m+1] S_{-}^{m-1}|n\rangle_{\mathrm{BA}} . \tag{5.4}
\end{equation*}
$$

Taking the derivative at $q=q_{0}$ and noticing that $[N-2 n-m+1]$ is $\sim \mathrm{O}\left(q-q_{0}\right)$, we get

$$
\begin{align*}
&\left(\frac{\mathrm{d}}{\mathrm{~d} q} S_{+}\right)_{q_{0}}\left(S_{-}^{m}|n\rangle_{\mathrm{BA}}\right)_{q_{0}}+\left(S_{+}\right)_{q_{0}}\left(\frac{\mathrm{~d}}{\mathrm{~d} q} S_{-}^{m}|n\rangle_{\mathrm{BA}}\right)_{q_{0}} \\
&=[m]_{4_{0}}(N-2 n-m+1) \frac{q_{0}^{N-2 n-m}+q_{0}^{-N+2 n+m-2}}{q_{0}-q_{0}^{-1}}\left(S_{-}^{m-1}|n\rangle_{\mathrm{BA}}\right)_{q_{0}} \tag{5.5}
\end{align*}
$$

where $\left(\mathrm{d} / \mathrm{d} q S_{+}\right)_{q_{0}}$ is the derivative of $S_{+}$at $q=q_{0}$, obtained by differentiating (2.3) with respect to $q$.

Since

$$
\frac{\mathrm{d}}{\mathrm{~d} q}\left(S_{+}|n, m\rangle_{\mathrm{BA}^{\prime}}\right)_{4_{0}}=\left(\frac{\mathrm{d}}{\mathrm{~d} q} S_{+}\right)_{4_{0}}|n, m\rangle_{\mathrm{BA}^{\prime}}+\left(S_{+}\right)_{4_{0}}\left(\frac{\mathrm{~d}}{\mathrm{~d} q}|n, m\rangle_{\mathrm{BA}^{\prime}}\right)_{4_{10}}=0
$$

we have

$$
\begin{align*}
\left(S_{+}\right)_{q_{0}}\left(\frac{\mathrm{~d}}{\mathrm{~d} q}\right. & \left.S_{-}^{m}|n\rangle_{\mathrm{BA}}-c\left(q_{0}\right) \frac{\mathrm{d}}{\mathrm{~d} q}|n, m\rangle_{\mathrm{BA}^{\prime}}\right)_{q_{0}} \\
& =\left(S_{+}\right)_{q_{0}}|b\rangle \\
& =[m] \frac{q_{0}^{N-2 n+m}+q_{0}^{-N+2 n+m+2}}{q_{0}-q_{0}^{-1}}(N-2 n-m+1)\left(S_{-}^{m-1}|n\rangle_{\mathrm{BA}}\right)_{q_{0}} \tag{5.6}
\end{align*}
$$

i.e. $|b\rangle$ thus defined satisfies (5.1). In a similar way we can show that $|b\rangle$ satisfies (5.2), and give the results

$$
\begin{align*}
& H|n\rangle_{\mathrm{BA}}=E_{n}|n\rangle_{\mathrm{BA}} \quad H|n, m\rangle_{\mathrm{BA}}=E_{n+m}|n, m\rangle_{\mathrm{BA}^{\prime}} \\
& H|b\rangle=E_{n}\left(q_{0}\right)|b\rangle+\frac{\mathrm{d}}{\mathrm{~d} q}\left(E_{n}-E_{n+m}\right)\left(S_{-}\right)^{m}|n\rangle_{\mathrm{BA}} . \tag{5.7}
\end{align*}
$$

Thus the newly defined $|b\rangle$ can make up the 'missing states'. A quasidiagonal $H$ keeps diagonal elements of $H$ unchanged. And the off-diagonal elements are nonvanishing. This representation is indecomposable.

From the above procedure we can see that there always exits a state $|b\rangle$, such that applying $S_{-}$on $|n\rangle_{\mathrm{BA}}$ and $|b\rangle$, we can have the corresponding state space of the representation. As $\left(q_{0}\right)^{p}=-1$, it is easy to show $\left(S_{-}\right)^{p}=0$. We use $\left(S_{-}\right)^{p} /[p]$ to construct the state. Explicitly, we define (notice $j-j^{\prime}=m$ and $j+j^{\prime}+1=0 \bmod p$ )

$$
\begin{aligned}
& |j-l p-r, A\rangle=\left(S_{-}\right)^{t_{p+r}} /[p]^{\prime}|n\rangle \\
& \left|j^{\prime}-l p-r, B\right\rangle=\left(S_{-}\right)^{l p+r} /[p]^{\prime}|b\rangle
\end{aligned}
$$

for $0 \leqslant r<p$. We then have

$$
\begin{array}{ll}
S_{z}|M, A\rangle=M|M, A\rangle & |M-1, A\rangle=\frac{S_{-}}{[p]^{\alpha}}|M, A\rangle \\
S_{z}|M, B\rangle=M|M, B\rangle & |M-1, B\rangle=\frac{S_{-}}{[p]^{\beta}}|M, B\rangle
\end{array}
$$

where

$$
\begin{aligned}
& \alpha= \begin{cases}1 & \text { when } j-M+1=0(\bmod p) \\
0 & \text { otherwise }\end{cases} \\
& \beta= \begin{cases}1 & \text { when } j^{\prime}-M+1=0(\bmod p)=-(j+M(\bmod p)) \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

When $r+1<p$, the action of $S_{+}$gives

$$
\begin{aligned}
S_{+} \mid j^{\prime}-l p-r & -1, B\rangle \\
& =S_{+}\left(S_{-}\right)^{l p+r+1} /[p]^{\prime}|b\rangle \\
& =\left(S_{-}\right)^{t p+r+1} /[p]^{\prime} S_{+}|b\rangle+\left[S_{+},\left(S_{-}\right)^{l p+r+1}\right] /[p]^{l}|b\rangle \\
& =\left(S_{-}\right)^{t p+r+1} /[p]^{\prime} c_{1}\left(S_{-}\right)^{m-1}|n\rangle_{\mathrm{BA}}+\frac{[l p+r+1]}{[p]^{l}}\left(S_{-}\right)^{l p+r}\left[2 S_{-}-l p-r\right]|b\rangle \\
& =\left(S_{-}\right)^{i p+r+m} /[p]^{\prime} c_{1}|n\rangle_{\mathrm{BA}}+[l p+r+1]\left[2 j^{\prime}-l p-r\right]\left(S_{-}\right)^{t p+r} /[p]^{\prime}|b\rangle \\
& =F c_{1}|j-l p-r-m, A\rangle+[l p+r+1]\left[2 j^{\prime}-l p-r\right]\left|j^{\prime}-l p-r, B\right\rangle
\end{aligned}
$$

where $F=[p]$ for $r+m \geqslant p$ and $F=1$ for $r+m<p$. When $r+1=p$, we have
$S_{+}\left|j^{\prime}-l p-r-1, B\right\rangle$

$$
\begin{aligned}
& =S_{+}\left(S_{-}\right)^{(l+1) p} /[p]^{l+1}|b\rangle \\
& =\left(S_{-}\right)^{(l+1) p+m-1} /[p]^{l+1} c_{\mathrm{\imath}}|n\rangle_{\mathrm{BA}}+\frac{[(l+1) p]}{[p]}\left[2 j^{\prime}-l p-r\right]\left|j^{\prime}-l p-r, B\right\rangle \\
& =c_{1}|j-(l+1) p-m+1, A\rangle+\frac{[(l+1) p]}{[p]}\left[2 j^{\prime}-l p-r\right]\left|j^{\prime}-l p-r, B\right\rangle .
\end{aligned}
$$

Other relations of $S_{ \pm}$on $|B\rangle$ and $|A\rangle$ can be similarly obtained. Thus $\{|B\rangle,|A\rangle\}$ constitute a representation of $\mathrm{SU}_{4}(2)$.

Notice that

$$
\begin{aligned}
\left\langle j^{\prime}, B\right| j-m, & A\rangle \\
& \left.=\left(\frac{1}{\Delta q}\right)\left\{\left|S_{-}^{m}\right| n\right\rangle_{\mathrm{BA}}-c|n+m\rangle_{\mathrm{BA}}\right\}^{+} S_{-}^{m}|n\rangle_{\mathrm{BA}} \\
& =\left(\frac{1}{\Delta q}\right)_{\mathrm{BA}}\langle n| S_{+}^{m} S_{-}^{m}|n\rangle_{\mathrm{BA}} \\
& =[1][2] \ldots[m-1][2 j][2 j-1] \ldots[2 j-m+2] \frac{[2 j-m+1]}{\Delta q}\langle n \mid n\rangle \\
& =\text { const } \neq 0
\end{aligned}
$$

and

$$
\begin{aligned}
\langle M-1, B| M & -1, A\rangle \\
& =\langle M, B| S_{+} S_{-}|M, A\rangle /\left\{[p]^{\alpha+\beta}\right\} \\
& =\langle M, B| \frac{[j+M][j-M+1]}{[p]^{\alpha+\beta}}|M, A\rangle \\
& =\frac{[j+M]}{[p]^{\beta}} \frac{[j-M+1]}{[p]^{\alpha}}\langle M, B \mid M, A\rangle .
\end{aligned}
$$

Since

$$
\frac{[j+M]}{[p]^{\beta}} \frac{[j-M+1]}{[p]^{*}} \neq 0 \quad \text { for } j \geqslant M>-j
$$

we have $\langle M, B \mid M, A\rangle \neq 0$, giving $|M, B\rangle,|M, A\rangle \neq 0$ for $j^{\prime} \geqslant M \geqslant-j$ (when $M<$ $\left.-j^{\prime},|M, B\rangle \sim|M, A\rangle\right)$.

So far we have found an approach to make up 'missing states' and to generate a representation of $\mathrm{SU}_{4}(2)$. The representation is not irreducible but indecomposable, i.e. the type I representation of $\mathrm{SU}_{q}(2)$. For an $N$ spin lattice system, there exist variant sets of the solutions $\left\{k_{j}\right\}$ of the ba equation. Some of them have only distinct impulsions $k_{j} \mathrm{~s}$, while others have distinct impulsions $k_{j}$ and identical impulsions $\gamma_{0}$, and can be classified into two classes. In the first case we cannot find another solution which has some $k \mathrm{~s}$ and $m$ identical $\gamma_{0} \mathrm{~s}$ for a state in this class. For the solution in the second class, we can find a pair of solutions which generate an indecomposable representation. Therefore, we have given an approach to construct type I and II representations of $\mathrm{SU}_{4}(2)$.

## Acknowledgment

This work was supported in part by the National Natural Science Foundation of China through the Nankei Institute of Mathematics.

## Appendix

For a base vector $\left|x_{1}, \ldots, x_{n+m}\right\rangle$ we derive $f\left(x_{1}, \ldots, x_{n+m}\right)$. To perform the permutations and negations of $n k \mathrm{~s}$ and $m \gamma \mathrm{~s}$ to match $n+m x \mathrm{~s}$, we first choose $m x \mathrm{~s}$ $x_{j_{1}}<x_{j_{2}}<\ldots<x_{j_{m}}$ for $m \gamma \mathrm{~s}$. At the same time we have $n x \mathrm{~s} x_{i_{1}}<x_{i_{2}}<\ldots<x_{i_{n}}$ for $n$ $k \mathrm{~s}$. This is equivalent to giving a set of numbers $0 \leqslant \nu_{1} \leqslant \nu_{2} \leqslant \ldots \leqslant \nu_{m} \leqslant n$, where $\nu_{t}$ denotes the number of $x_{i} \mathrm{~s}$ smaller than $x_{j_{i}}$. Next we perform the permutations and negations of $k \mathrm{~s}$ to match the $n x_{i_{i}} \mathrm{~s}$, and the permutations and negations of $\gamma \mathrm{s}$ to match the $m x_{j_{i}}$. We have $k_{p_{s}}$ corresponding to $x_{i_{,}}$and $\gamma_{p_{i}}$ corresponding to $x_{j_{i}}$, and have $\exp \left(\mathrm{i} \sum k_{p_{s}} x_{i_{s}}+\mathrm{i} \sum \gamma_{P_{t}} x_{j_{i}}\right)=\mathrm{e}^{\mathrm{i} k x}$
$\sum_{p}=\sum_{\left\{\nu_{i}\right\}} \sum_{\text {per. of } k} \sum_{\text {neg. of } k} \sum_{\text {per. of } \gamma} \sum_{\text {neg. of } \gamma} \equiv \Sigma_{1} \Sigma_{2} \Sigma_{3} \Sigma_{4} \Sigma_{5}$

$$
\begin{gather*}
\varepsilon_{p}=\left(\varepsilon_{p}\right)_{\{p /\}}\left(\varepsilon_{p}\right)_{\text {per. of } k}\left(\varepsilon_{p}\right)_{\text {neg. or } k}\left(\varepsilon_{p}\right)_{\text {per. of } \gamma}\left(\varepsilon_{p}\right)_{\text {neg. of } \gamma}  \tag{A1b}\\
\equiv\left(\varepsilon_{p}\right)_{1}\left(\varepsilon_{p}\right)_{2}\left(\varepsilon_{p}\right)_{3}\left(\varepsilon_{p}\right)_{4}\left(\varepsilon_{p}\right)_{5} . \tag{A1c}
\end{gather*}
$$

Since $\beta\left(\gamma_{j}\right)=\mathrm{O}(\varepsilon)$, in the last step we therefore need only to consider the permutations of $\gamma \mathrm{s}$. Also, in the factor $\mathrm{e}^{\mathrm{ikx}}$, we can use $\exp \left(\mathrm{i} \gamma x_{j_{i}}\right)$ for $\exp \left(\mathrm{i} \gamma_{p_{t}} x_{j_{i}}\right)$ with a relative error $\sim O(\varepsilon)$.

We have from (2.10), (2.11)

$$
\begin{align*}
& f\left(x_{1}, \ldots, x_{n+m}\right) \\
& \equiv f\left(x_{i_{1}}, \ldots, x_{i_{n}} ; x_{j_{1}}, \ldots, x_{j_{m}}\right) \\
& =\Sigma_{1} \Sigma_{2} \Sigma_{3} \Sigma_{4}\left(\varepsilon_{p}\right)_{1}\left(\varepsilon_{p}\right)_{2}\left(\varepsilon_{p}\right)_{3}\left(\varepsilon_{p}\right)_{4} \prod_{x_{i}<x_{t i}} B\left(-k_{p_{v}}, \gamma_{p_{i}}\right) \exp \left(-\mathrm{i} \gamma_{p i}\right) \\
& \times \prod_{x_{i}>x_{i t}} B\left(-\gamma_{p_{t}}, k_{p_{t}}\right) \exp \left(-\mathrm{i} k_{p_{v}}\right) \prod_{r} \beta\left(-k_{p_{r}}\right) \\
& \times \prod_{x_{i}<x_{i,}} B\left(-k_{p_{v}}, k_{p_{i}}\right) \exp \left(-\mathrm{i} k_{p_{v},}\right) \prod_{i} \beta\left(-\gamma_{p_{t}}\right) \\
& \times \prod_{x_{t_{t}}<x_{t,}} B\left(-\gamma_{p_{t}}, \gamma_{p_{t}}\right) \exp \left(-\mathrm{i} \gamma_{p_{t}}\right) \mathrm{e}^{\mathrm{ikx}}(1+\mathrm{O}(\varepsilon)) . \tag{A2}
\end{align*}
$$

Noticing that

$$
\begin{align*}
& B\left(-k_{1}, \gamma_{l}\right) \mathrm{e}^{-\mathrm{i} \gamma_{i}}=B\left(k_{1}, \gamma_{l}\right) \mathrm{e}^{-\mathrm{i} \gamma_{t}}(1+\mathrm{O}(\varepsilon)) \\
& B\left(-\gamma_{1}, k_{s}\right) \mathrm{e}^{-\mathrm{i} k_{1}}=B\left(-\gamma_{l},-k_{1}\right) \mathrm{e}^{\mathrm{ik},}(1+\mathrm{O}(\varepsilon)) \\
& \prod_{x_{1}<x_{t_{t}}} B\left(-k_{p_{3}}, \gamma_{p_{t}}\right) \exp \left(-\mathrm{i} \gamma_{p_{t_{2}}}\right) \prod_{x_{1}>x_{i_{t}}} B\left(-\gamma_{p_{t}}, k_{p_{1}}\right) \exp \left(-\mathrm{i} k_{p_{1}}\right) \\
& =\prod_{i, 1} B\left(-\gamma_{p_{i}}, k_{p_{v}}\right) \exp \left(-\mathrm{i} k p_{v}\right)\left(-q^{-2}\right)^{r_{1}+\ldots+r_{r, w}} \tag{A3}
\end{align*}
$$

we can move $\Sigma_{2} \Sigma_{3}\left(\varepsilon_{p}\right)_{2}\left(\varepsilon_{p}\right)_{3}$ over

$$
\Pi B\left(-k_{p_{0}}, \gamma_{p_{t}}\right) \exp \left(-\mathrm{i} \gamma_{p_{t}}\right) \Pi B\left(-\gamma_{p_{i}}, k_{p_{i}}\right) \exp \left(-\mathrm{i} k_{p_{i}}\right)
$$

## and obtain

$$
\begin{aligned}
& f=\Sigma_{1}\left(\varepsilon_{p}\right)_{1}\left(-q^{-2}\right)^{\Sigma^{\nu_{t}}}
\end{aligned}
$$

$$
\begin{align*}
& \times \prod_{x_{1},<x_{1},} B\left(-k_{p_{4}}, k_{p_{3}}\right) \exp \left(-\mathrm{i} k_{p_{4}}\right) \exp \left[\mathrm{i}\left(k_{p_{1}} x_{i_{1}}+\ldots+k_{p_{n}} x_{i_{n}}\right)\right] \\
& \times \Sigma_{4}\left(\varepsilon_{p}\right)_{4} \prod_{1} \bar{\beta}\left(-\gamma_{t}\right) \prod_{x_{t}<x_{i, t}} \bar{B}\left(-\gamma_{p_{t}}, \gamma_{p_{r}}\right) \\
& \times \exp \left(-\mathrm{i} \gamma_{p_{i}}\right) \exp \left[\mathrm{i} \gamma\left(x_{j_{1}}+\ldots+x_{j_{, m}}\right)\right]\{1+\mathrm{O}(\varepsilon)\} \\
& =C^{\prime \prime} \sum_{\left\{p_{i}\right\}}\left(q^{-2}\right)^{\mathrm{\Sigma} \nu_{l}} f\left(x_{i_{1}}, \ldots, x_{i_{n}}\right) \\
& \times\left[\Sigma_{4}\left(\varepsilon_{p}\right)_{4} \prod_{x_{t_{t}}<x_{i_{i}}}\left(\varepsilon_{p_{t}}-q^{2} \varepsilon_{p_{t}}\right)\right] \\
& \times \exp \left[\mathrm{i} \gamma\left(x_{j_{1}}+\ldots+x_{j_{j_{1}}}\right)\right](1+\mathrm{O}(\varepsilon)) \tag{C4}
\end{align*}
$$

where

$$
C^{\prime \prime}=\prod_{l s} B\left(-\gamma_{t}, k_{s}\right) \mathrm{e}^{-\mathrm{i} k_{\mathrm{s}}} \prod_{l} \beta\left(-\gamma_{l}\right)\left[(-\mathrm{i})\left(1-q^{2}\right)\right]^{m} .
$$

We can show that

$$
\begin{equation*}
\Sigma_{4}\left(\varepsilon_{p}\right)_{4} \Pi\left(\varepsilon_{p_{i}}-q^{2} \varepsilon_{p_{i}}\right)=\prod_{i<j}\left(\varepsilon_{i}-\varepsilon_{j}\right)[m]!q^{(m / 2)(m-\xi)} \tag{A5}
\end{equation*}
$$

and finally obtain

$$
\begin{equation*}
f=\sum_{\left\{w_{i}\right\}} C^{\prime}\left(q^{-2}\right)^{\Sigma^{v_{i}}} f\left(x_{h_{1}}, \ldots, x_{i_{n}}\right) \prod_{i<j}\left(\varepsilon_{i}-\varepsilon_{j}\right)[m]!\exp \left(\mathrm{i} \gamma \sum_{l} x_{j_{i}}\right) . \tag{A6}
\end{equation*}
$$

## References

[1] Pasquier N and Saleur H 1990 Nucl. Phys. B 330523
[2] Gaudin M 1983 La Fonction d'Onde de Bethe (Paris: Masson)
[3] Takahtazhan L A and Faddeev L D 1979 Uspeki Math: Nauk. 34 5, 13
[4] Lowenstein J H 1982 Introduction to the Bethe-Ansatz approach in 1+1-dimensional models Recent Advances in Field Theory and Statistical Mechanics ed J B Zuber and R Stora (Amsterdam: NorthHoltand)
[5] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[6] Takahtazhan L A and Faddeev L D 1981 Zap. Nauch. Semin. LOMI 109134
[7] Yang C N and Yang C P 1966 Phys. Rev. 150 321, 327
[8] Izergin A G and Korepin V E 1982 Lett. Math. Phys. 6283
[9] Alcarez F C, Barber M N, Betchelor M T, Baxter R J and Quispel G R W 1987 J. Phys. A: Math. Gen. 206397
[10] Sklyanin E K 1988 J. Phys. A: Math. Gen. 212375
[11] Bo-Yu Hou, Bo-Yuan Hou and Zhong-Qi Ma 1990 Preprint IC/90/386
[12] Karowski M 1989 Preprint ETH-TH-89-43
[13] Mezincescu L and Nepomechie R I 1989 Preprint UMTG-158

